Advanced Techniques in Modern Anomaly Detection: Beyond Basic KDE and Isolation Forest
Advanced Techniques in Modern Anomaly Detection: Beyond Basic KDE and Isolation Forest
Introduction: The Complexity of Modern Anomaly Detection
In today’s complex data landscapes, traditional anomaly detection approaches often fall short. This deep technical dive explores advanced implementations of Kernel Density Estimation (KDE) and Isolation Forest, including ensemble methods, adaptive techniques, and real-world optimization strategies.
Advanced Kernel Density Estimation
Adaptive Bandwidth Selection
Traditional KDE uses fixed bandwidth, but adaptive methods can significantly improve performance:
from sklearn.neighbors import KernelDensity
from sklearn.model_selection import GridSearchCV
import numpy as np
class AdaptiveKDE:
def __init__(self, bandwidths=np.logspace(-1, 1, 20)):
self.bandwidths = bandwidths
self.kde_models = {}
def fit(self, X):
# Perform cross-validation for each local region
for region_idx in self._get_regions(X):
region_data = X[region_idx]
grid_search = GridSearchCV(
KernelDensity(kernel='gaussian'),
{'bandwidth': self.bandwidths},
cv=5
)
grid_search.fit(region_data)
self.kde_models[region_idx] = grid_search.best_estimator_
def _get_regions(self, X):
# Implement region splitting logic (e.g., using clustering)
pass
Multi-Scale KDE
Implementing a multi-scale approach to capture both local and global anomalies:
class MultiScaleKDE:
def __init__(self, scale_factors=[0.1, 0.5, 1.0, 2.0]):
self.scale_factors = scale_factors
self.models = []
def fit(self, X):
base_bandwidth = self._estimate_base_bandwidth(X)
for scale in self.scale_factors:
kde = KernelDensity(
bandwidth=base_bandwidth * scale,
kernel='gaussian'
)
kde.fit(X)
self.models.append(kde)
def score_samples(self, X):
scores = np.zeros((len(self.models), len(X)))
for i, kde in enumerate(self.models):
scores[i] = -kde.score_samples(X)
return np.mean(scores, axis=0)
Enhanced Isolation Forest
Extended Isolation Forest (EIF)
The extended version improves upon the original by considering hyperplanes for splitting:
class ExtendedIsolationForest:
def __init__(self, n_estimators=100, sample_size=256):
self.n_estimators = n_estimators
self.sample_size = sample_size
self.trees = []
def _random_hyperplane_split(self, X):
n_features = X.shape[1]
normal_vector = np.random.normal(size=n_features)
normal_vector /= np.linalg.norm(normal_vector)
point = np.random.choice(X, size=1)
return normal_vector, point
def fit(self, X):
for _ in range(self.n_estimators):
tree = self._build_tree(X)
self.trees.append(tree)
Hybrid Approach: Combining KDE and Isolation Forest
A novel approach combining the strengths of both methods:
class HybridAnomalyDetector:
def __init__(self, kde_weight=0.4, if_weight=0.6):
self.kde_weight = kde_weight
self.if_weight = if_weight
self.kde = MultiScaleKDE()
self.iforest = ExtendedIsolationForest()
def fit(self, X):
self.kde.fit(X)
self.iforest.fit(X)
def predict(self, X):
kde_scores = self.kde.score_samples(X)
if_scores = self.iforest.score_samples(X)
# Normalize scores
kde_scores = (kde_scores - np.mean(kde_scores)) / np.std(kde_scores)
if_scores = (if_scores - np.mean(if_scores)) / np.std(if_scores)
# Combine scores
final_scores = (self.kde_weight * kde_scores +
self.if_weight * if_scores)
return final_scores
Advanced Optimization Techniques
Feature Importance in Anomaly Detection
def calculate_feature_importance(model, X):
importances = np.zeros(X.shape[1])
for feature in range(X.shape[1]):
X_permuted = X.copy()
X_permuted[:, feature] = np.random.permutation(X[:, feature])
# Compare scores before and after permutation
original_scores = model.score_samples(X)
permuted_scores = model.score_samples(X_permuted)
importances[feature] = np.mean(np.abs(original_scores - permuted_scores))
return importances / np.sum(importances)
Online Learning Implementation
For streaming data scenarios:
class OnlineAnomalyDetector:
def __init__(self, window_size=1000):
self.window_size = window_size
self.data_window = []
self.model = None
def update(self, new_data):
self.data_window.extend(new_data)
if len(self.data_window) > self.window_size:
self.data_window = self.data_window[-self.window_size:]
# Retrain model on updated window
self.model = HybridAnomalyDetector()
self.model.fit(np.array(self.data_window))
Performance Optimization and Scalability
Parallel Processing Implementation
from joblib import Parallel, delayed
class ParallelAnomalyDetector:
def __init__(self, n_jobs=-1):
self.n_jobs = n_jobs
def parallel_score(self, X, chunk_size=1000):
chunks = [X[i:i + chunk_size] for i in range(0, len(X), chunk_size)]
scores = Parallel(n_jobs=self.n_jobs)(
delayed(self._score_chunk)(chunk)
for chunk in chunks
)
return np.concatenate(scores)
Advanced Evaluation Metrics
Implementation of Specialized Metrics
def calculate_advanced_metrics(y_true, y_pred, scores):
metrics = {
'precision_at_k': precision_at_k(y_true, scores, k=100),
'average_precision': average_precision_score(y_true, scores),
'area_under_roc': roc_auc_score(y_true, scores),
'area_under_pr': average_precision_score(y_true, scores)
}
# Add volume-based metrics
metrics['volume_ratio'] = calculate_volume_ratio(y_true, y_pred)
return metrics
Real-World Applications and Optimizations
Time Series Anomaly Detection
class TimeSeriesAnomalyDetector:
def __init__(self, seasonality_period=None):
self.seasonality_period = seasonality_period
def transform_time_features(self, X):
# Extract temporal features
transformed = np.column_stack([
X,
self._get_seasonal_features(X),
self._get_trend_features(X)
])
return transformed
Handling High Cardinality Categorical Features
def handle_categorical_features(X, categorical_columns):
embeddings = {}
for col in categorical_columns:
# Create frequency-based embedding
value_counts = X[col].value_counts(normalize=True)
embeddings[col] = value_counts.to_dict()
return embeddings
Conclusion
Modern anomaly detection requires a sophisticated approach that combines multiple techniques and considers various optimization strategies. The implementations provided here serve as a foundation for building robust, scalable anomaly detection systems that can handle real-world complexities.
Remember that these implementations are templates and should be adapted based on specific use cases and requirements. The key is to understand the underlying principles and modify the code accordingly.